CAPTURA's Approach for AMR Data Analysis and Capacity Building

Nimesh Poudyal, IVI 28/06/2022

Table of Contents

- Data Collection and Curation
- Key AMR Highlights
- Key CAPTURA Observations
- Utilizing the data findings going forward

CAPTURA Data Collection and Curation

CAPTURA DATA: Collection and Curation

- Laboratory Log-books
 - Data source identification
 - WHONET training
 - Digitalization using WHONET
 - Upload to CAPTURA warehouse
- Laboratory Information Systems
 - Support data extraction
 - BacLink training
 - Data curation
 - Upload to CAPTURA warehouse

Key AMR Highlights

CAPTURA's AMR Engagement (SA and SEA)

Descriptive Statistics – Aggregated for 7 countries

Descriptive Statistics – Culture Results

Descriptive Statistics – Monthly distribution of collected records

Total records

Descriptive Statistics – Specimen processed

Note: Total specimen with no type defined : 5,423

Descriptive Statistics – Specimen processed by region

Types of specimen for Southeast Asia (n=40502)

Descriptive Statistics – Specimen types by country

есо	Escherichia coli	ps-	Pseudomonas sp.
kl-	Klebsiella sp.	scn	Staphylococcus, coagulase negative
sau	Staphylococcus aureus	pae	Pseudomonas aeruginosa

Top 5 organism – Country Specific

5 Most common organisms – PNG

есо	Escherichia coli	ent	Enterococcus sp.
kl-	Klebsiella sp.	scn	Staphylococcus, coagulase negative
sau	Staphylococcus aureus	sat	Salmonella Typhi

Top 5 isolates from blood: All countries

есо	Escherichia coli
sau	Staphylococcus aureus
kl-	Klebsiella sp.
ps-	Pseudomonas sp.
ent	Enterococcus sp.
bcs	Bacillus sp.
ac-	Acinetobacter sp.
saa	Salmonella Paratyphi A
scn	Staphylococcus, coagulase negative
sal	Salmonella sp.
ppm	Burkholderia pseudomallei
sma	Serratia marcescens
Str	Streptococcus spp.
sat	Salmonella Typhi
рае	Pseudomonas aeruginosa
ecl	Enterobacter cloacae

Top 5 isolates from urine: All countries

eco	Escherichia coli
sau	Staphylococcus aureus
kl-	Klebsiella sp.
ps-	Pseudomonas sp.
ent	Enterococcus sp.
scn	Staphylococcus, coagulase negative
ppm	Burkholderia pseudomallei
pmi	Proteus miribilis
gm-	Gram negative bacteria
pae	Pseudomonas aeruginosa
ecl	Enterobacter cloacae

<5 Years samples and top five organisms

<5 Years samples and top five organisms

scn	n Staphylococcus, coagulase negative	
sat	Salmonella Typhi	
sau	Staphylococcus aureus	
ac- Acinetobacter sp.		
eco Escherichia coli		
kl-	Klebsiella sp.	
ent	Enterococcus sp.	
pr- Proteus sp.		

Resistance pattern of *E. Coli* (n=186,306)

Staphylococcus aureus: Resistance Pattern

Resistance pattern of *S. aureus* (n=56,880)

Bangladesh – Resistance Pattern of Salmonella Typhi

Bangladesh Resistance pattern of *Salmonella* Typhi (n=9,415)

Nepal – Resistance Pattern of Salmonella Typhi

Nepal Resistance pattern of *Salmonella* Typhi (n= 2,139)

Antimicrobial trends

Multidrug resistance (MDR/XDR/PDR)

Country A

Country A

Country B

Key Observations

- Huge information resources identified; baseline data foundation created
- Awareness and willingness to share data but hesitancy to some extent
- Potential opportunity for regional data sharing
- Mechanism needs to be ensured for long term sustainability of data collection and sharing mechanism

Technical Observations and areas for improvement

- High level of MDR among frequently identified bacteria and isolation of possible XDR/PDR bacteria warrants validation of the report and close monitoring to prevent the spread of these bugs
- Inconsistencies in recording
 - No record of zone diameter/ treatment and clinical details
- Record Keeping practices
 - No systematic way: storage of paper-based data
 - Device generated electronic data deleted
 - Custom build LIMS fit for clinical reporting not analysis
- Issues with data extraction
- Quality Issues
 - Missing QC records
 - Wrong drug-bug combination
 - Testing antibiotics

Utilizing the data findings going forward

Moving from CAPTURA to next phase

- Many stakeholders, activities, potential data contributors, huge data
- Opportunities and barriers
 - Commitment at government level, willingness to share data
 - Data quality, standardization, data exchange
- CAPTURA: Historical data collection
 - Moving from retrospective one time to prospective real-time sustainable
- Data into action
 - Evidence based policies

Thank you